If it's not what You are looking for type in the equation solver your own equation and let us solve it.
c^2+7c-3=0
a = 1; b = 7; c = -3;
Δ = b2-4ac
Δ = 72-4·1·(-3)
Δ = 61
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$c_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$c_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$c_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(7)-\sqrt{61}}{2*1}=\frac{-7-\sqrt{61}}{2} $$c_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(7)+\sqrt{61}}{2*1}=\frac{-7+\sqrt{61}}{2} $
| 0.031225605=1/x | | 4x-19=37-4x | | 10u−6u=16 | | 3/3x=14/16 | | 1/x=-0.02 | | x=2/2=x/4 | | 2x/3=32/16 | | 3(2x+4)-5x-3=10 | | (1/4)+(1/17)=a | | 28÷w=3 | | 4n+2=3n+7 | | 11b+2b+5b=11b+2b+5b= | | 6k−5k=16 | | 2+x/2=4/2 | | 1/4+1/17=a | | 16k−15k=2 | | 8x2=x0+7 | | 15(t+17)=-15 | | 5+7x=58 | | 2r+14=10 | | -6(2y-5)=90 | | 2(n+5)=60 | | 3d+9=15 | | 8x6=8x(5+6) | | --5m=-75 | | 15-6x=18-8x | | 30=2(x-3)(x-5) | | X^2+7x+49=3x | | 5x−(−2)=10x−3(x+1) | | (5^x)+8=23 | | h=-16(1)^2+79 | | -36+7=76-x |